Nonlinear continuum growth model of multiscale reliefs as applied to rigorous analysis of multilayer short-wave scattering intensity. I. Gratings

نویسندگان

  • Leonid Goray
  • Maxim Lubov
چکیده

It is shown that taking into proper account certain terms in the nonlinear continuum equation of thin-film growth makes it applicable to the simulation of the surface of multilayer gratings with large boundary profile heights and/or gradient jumps. The proposed model describes smoothing and displacement of Mo/Si and Al/Zr boundaries of gratings grown on Si substrates with a blazed groove profile by magnetron sputtering and ion-beam deposition. Computer simulation of the growth of multilayer Mo/Si and Al/Zr gratings has been conducted. Absolute diffraction efficiencies of Mo/Si and Al/Zr gratings in the extreme UV range have been found within the framework of boundary integral equations applied to the calculated boundary profiles. It has been demonstrated that the integrated approach to the calculation of boundary profiles and of the intensity of short-wave scattering by multilayer gratings developed here opens up a way to perform studies comparable in accuracy to measurements with synchrotron radiation, at least for known materials and growth techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory

A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

Multiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation

This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...

متن کامل

Optimal High Frequency Cut-off in SWAN Wave Model

This study investigates the importance of selecting an appropriate cut-off frequency in the SWAN model when it is applied to areas with limited fetches. In SWAN, the cut-off frequency is a constant value set by user in the model, and its appropriate selection plays an important role in the accuracy and optimization of the wave model; very high value increases the computational cost and might le...

متن کامل

Nonlinear Responses and Optical Limiting Behavior of Ag Nanoparticle Suspension

In this study, the nonlinear optical properties and optical limiting performance of the silver nanoparticles (AgNPs) in distilled water are investigated. The nonlinear absorption coefficient of the colloid is measured by the Z-scan technique. The optical limiting behavior of the AgNP suspension is investigated under exposure to nanosecond laser pulses at 532 nm. The results show that nonlinear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2013